Data Mining Storm Attributes from Spatial Grids

نویسندگان

  • VALLIAPPA LAKSHMANAN
  • TRAVIS SMITH
چکیده

A technique to identify storms and capture scalar features within the geographic and temporal extent of the identified storms is described. The identification technique relies on clustering grid points in an observation field to find self-similar and spatially coherent clusters that meet the traditional understanding of what storms are. From these storms, geometric, spatial, and temporal features can be extracted. These scalar features can then be data mined to answer many types of research questions in an objective, data-driven manner. This is illustrated by using the technique to answer questions of forecaster skill and lightning predictability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering Algorithm for 2D Multi-Density Large Dataset Using Adaptive Grids

Clustering is a key data mining problem. Densitybased clustering algorithms have recently gained popularity in the data mining field. Density and grid based technique is a popular way to mine clusters in a large spatial datasets wherein clusters are regarded as dense regions than their surroundings. The attribute values and ranges of these attributes characterize the clusters In this paper we a...

متن کامل

Assessment of uncertainty for coal quality-tonnage curves through minimum spatial cross-correlation simulation

Coal quality-tonnage curves are helpful tools in optimum mine planning and can be estimated using geostatistical simulation methods. In the presence of spatially cross-correlated variables, traditional co-simulation methods are impractical and time consuming. This paper investigates a factor simulation approach based on minimization of spatial cross-correlations with the objective of modeling s...

متن کامل

Mining Model Trees from Spatial Data

Mining regression models from spatial data is a fundamental task in Spatial Data Mining. We propose a method, namely Mrs-SMOTI, that takes advantage from a tight-integration with spatial databases and mines regression models in form of trees in order to partition the sample space. The method is characterized by three aspects. First, it is able to capture both spatially global and local effects ...

متن کامل

Artificial Intelligence for prediction of porosity from Seismic Attributes: Case study in the Persian Gulf

Porosity is one of the key parameters associated with oil reservoirs. Determination of this petrophysical parameter is an essential step in reservoir characterization. Among different linear and nonlinear prediction tools such as multi-regression and polynomial curve fitting, artificial neural network has gained the attention of researchers over the past years. In the present study, two-dimensi...

متن کامل

An Efficient Storm Identification from Big Rainfall Data Using MapReduce

This paper is part of my doctoral dissertation, “Analysis and Modeling Techniques for Geo-Spatial Datasets,” which focuses on how to summarize, model, and format spatiotemporal data for analysis and mining. The dissertation consists of four main components: (1) spatio-temporal knowledge representation, (2) identifying meaningful concepts from raw data, (3) converting raw data to conceptual data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009